LIQUIDITY TRAPS, DEBT RELIEF, AND MACROPRUDENTIAL POLICY: A MECHANISM DESIGN APPROACH

Keshav Dogra¹

Federal Reserve Bank of New York¹

November 6, 2015

¹The views I express are my own and do not necessarily represent those of the Federal Reserve Bank of New York or the Federal Reserve System.

MOTIVATION

- Frequently suggested policy in high-debt recessions:
 write off debt (HOLC (1933), Iceland (2008))
 - Keynesian benefits: transfers wealth to high MPC borrowers, boosting demand
 - ▶ Cost: Encourages overborrowing ex ante
- ► Alternative policy: **macroprudential regulation** to prevent overborrowing
 - ▶ Cost: may make borrowers worse off
- Write model to ask if debt relief, macroprudential policy are
 - ex ante optimal?
 - Pareto improving?

Model

- Perfect for esight, time is discrete, t = 0, 1, ...
- ▶ Borrowers and savers, equal measure, preferences

$$U(\boldsymbol{c}^{i},\theta_{i}) := \mathcal{U}(c_{0}^{i},\theta_{i}) + \sum_{t=1}^{\infty} \beta^{t} u(c_{t}^{i})$$
(1)

where $\mathcal{U}_{c\theta} > 0$, $\frac{\theta_B}{\theta_B} > \theta_S = 1$.

- ► Costlessly produce $y_t^i \le y^*$ units of variety *i* output. Consume an aggregate of all varieties.
- Constraints:

$$\begin{aligned} c_t^i &= y_t^i - d_t^i + \frac{d_{t+1}^i}{1 + r_t} \\ d_{t+1}^i &\leq \phi, t = 1, \dots \\ d_0^i &= 0, \forall i \end{aligned} \tag{2}$$

Equilibrium with ZLB $r_t \ge 0$

DEFINITION

A ZLB-constrained equilibrium is $\{c_t^i, d_t^i, y_t, r_t\}$ such that

1. Each household i maximizes (1) s.t. (2), (3), (4)

2.
$$c_t^S + c_t^B = 2y_t$$

3. $r_t \ge 0, y_t^i = y_t \le y^*, r_t(y^* - y_t) = 0$

graph

NK model

EX ANTE OVERBORROWING

PROPOSITION There exists θ^{ZLB} such that if $\theta_B > \theta^{ZLB}$, then

$$r_t = 0$$

$$u'(c_1^S) = \beta u' (y^* + (1 - \beta)\phi)$$

$$y_1 = c_1^S - d_1 + \phi < y^*$$

▶ Korinek and Simsek [2014]

ZLB ECONOMICS

• Resource constraint:

$$c_1^S + c_1^B = 2y_1$$

• c_1^S pinned down by savers' Euler equation:

$$u'(c_1^S) = \beta u'(c_2^S) = \beta u'(y^* + (1 - \beta)\phi)$$

• c_1^B by borrowing constraint:

$$c_1^B = y_1 + \phi - d_1$$

Substituting in:

$$c_1^S + (y_1 - d_1 + \phi) = 2y_1$$

$$y_1 = c_1^S - d_1 + \phi < y^*$$

POTENTIAL GAINS FROM TRANSFERS?

- Imagine unanticipated transfer T from savers to borrowers.
 - Borrowers better off

• Income increases:
$$y_1 = c_1^S + T - d_1 + \phi$$

- Savers no worse off!
- ▶ To restore full employment, need transfer

$$T^{FE} := d_1 - (c_1^S + \phi - y^*)$$

increasing in d_1 .

▶ Korinek and Simsek [2014], Farhi and Werning [2013]

Equilibrium with date 1 transfers

DEFINITION

An equilibrium with date 1 transfers is $\{c_t^i, d_t^i, y_t, r_t, \overline{T}\}$ such that, given a transfer function T(d):

1. Households maximize (1) s.t. (4), (3), and

$$c_1^i = y_1^i + T(d_1^i) - \bar{T} - d_1^i + \frac{d_2^i}{1 + r_1}$$

2.
$$c_t^B + c_t^S = 2y_t$$

3. $r_t \ge 0, y_t \le y^*, r_t(y^* - y_t) = 0$
4. Balanced budget:

$$T(d_1^S) + T(d_1^B) = 2\bar{T}$$

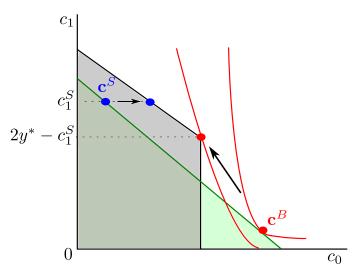
FULL EMPLOYMENT TRANSFER MAY NOT BE INCENTIVE COMPATIBLE c_1 \mathbf{c}^{S} y^* y_1 FE transfer **,** B N y^* c_0

MACROPRUDENTIAL POLICY WITH PRIVATE INFORMATION

- Alternative policy: date 0 debt limit $d_1 \leq \phi_0$.
- Efficient, Pareto improving under full information (Korinek and Simsek [2014], Farhi and Werning [2013])

▶ Under private information...

Debt limits may not be Pareto improving



Social planner solves

$\max_{c_0^S, c_1^S, c_2^S, c_0^B, c_1^B, c_2^B} \alpha U(\boldsymbol{c}^S, \theta_S) + (1 - \alpha) U(\boldsymbol{c}^B, \theta_B)$	(PP)
$c_0^S + c_0^B \le 2y^*$	(RC0)
$c_1^S + c_1^B \le 2y^*$	(RC1)
$c_2^S + c_2^B \le 2y^*$	(RC2)
$c_2^B \ge y^* - (1 - \beta)\phi$	(BC)
$u'(c_1^S) \ge \beta u'(c_2^S)$	(ZLB)
$U(\boldsymbol{c}^S, \theta_S) \ge U(\boldsymbol{c}^B, \theta_S)$	(ICS)
$U(\boldsymbol{c}^B, \theta_B) \ge U(\boldsymbol{c}^S, \theta_B)$	(ICB)

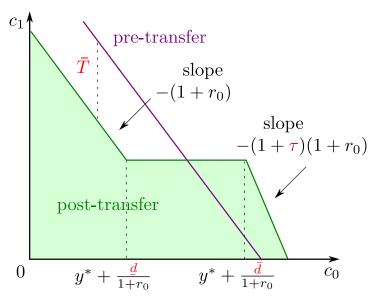
IMPLEMENTATION

PROPOSITION

Any solution to (PP) can be implemented either as an equilibrium with date 1 transfers, or as an equilibrium with date 0 transfers.

graph

DATE 1 TRANSFERS: DEBT RELIEF



DEBT RELIEF IMPLEMENTS EFFICIENT ALLOCATIONS

PROPOSITION

There exists $\alpha(\theta_B)$ such that

- 1. debt relief implements the optimal allocation iff $\alpha < \alpha(\theta_B)$.
- 2. If (ICS) binds, $\alpha < \alpha(\theta_B)$ and debt relief implements the optimal allocation.

graph

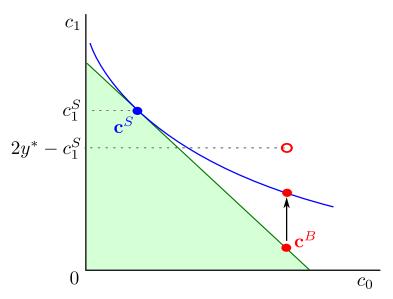
Debt relief is Pareto improving at the ZLB

- Debt relief is always ex ante Pareto optimal.
- ▶ When is it ex ante Pareto-improving?

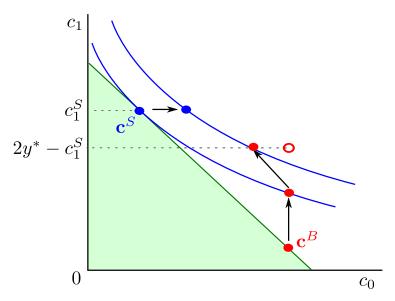
PROPOSITION

- 1. If $\theta_B > \theta^{ZLB}$, the competitive equilibrium is Pareto inefficient. Debt relief is always Pareto improving.
- 2. If $\theta_B \leq \theta^{ZLB}$, the competitive equilibrium is Pareto optimal. Debt relief is not Pareto improving.

PARETO IMPROVING DEBT RELIEF



PARETO IMPROVING DEBT RELIEF



TARGETED LOAN SUPPORT PROGRAMS

DEFINITION

$T_0(d)$ is a **targeted loan support program** (with macroprudential tax) if it has the form

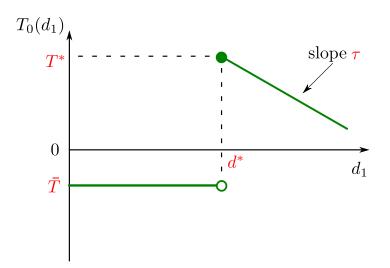
$$T_0(d) = -\overline{T} \text{ if } d < d^*$$
$$= T^* - \tau d \text{ if } d \ge d^*$$

for some $\overline{T}, T^* > 0, \tau$.

Implements same allocation as debt relief with a cap

▶ always efficient, ex ante Pareto improving at ZLB

TARGETED LOAN SUPPORT PROGRAMS



CONCLUSION

Debt relief with a cap (or loan support plus macropru tax) is Pareto improving at the ZLB.

Fiscal and macroprudential policy can be **substitutes** when monetary policy is constrained.

In paper: results robust to

- 1. continuous distribution of types
- 2. aggregate uncertainty
- 3. different sources of heterogeneity
- 4. labor supply

Key ingredients

- 1. Agents differ in preference for borrowing/saving (impatience), which is private information.
 - Heterogeneity \rightarrow distribution of debt
 - Private information \rightarrow incentives matter
- 2. Zero lower bound constrains interest rates.
 - Output demand-determined, role for fiscal policy
- 3. Exogenous contraction in borrowing constraint.
 - Aggregate demand shock
 - ▶ Introduces MPC heterogeneity

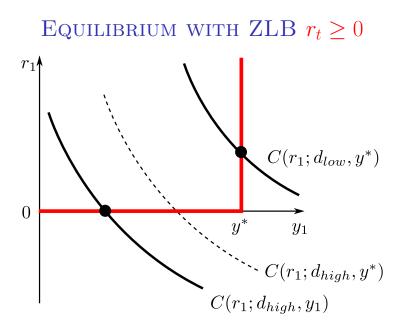
Write Pareto problem, solve for optimal transfer policy.

RESULTS

- 1. Unconditional transfer to borrowers is Pareto improving ex post, but not ex ante.
- 2. Macroprudential debt limit is Pareto improving under full information, but not under private information.
- 3. Ex ante optimal policy can be implemented with either debt relief with a cap, or with macroprudential taxes plus targeted loan support programs.
- 4. When ZLB binds, debt relief (or loan support) is ex ante Pareto improving. In normal times, purely redistributive.

Related Literature

- Deleveraging and ZLB (Eggertsson and Krugman [2012], Guerrieri and Lorenzoni [2011]): I ask what is optimal policy
- Ex post benefits of debt relief (Fornaro [2013]), and ex ante benefits of macroprudential policy (Korinek and Simsek [2014], Farhi and Werning [2013]): I add private information, study tradeoffs
- Optimal taxation and screening (Mirrlees [1971], Saez [2001]): macroeconomic externality, new motive for redistribution



NEW KEYNESIAN MODEL

- Preferences $u(C_t v(h_t))$
- ► C_t Dixit-Stiglitz aggregate of varieties j produced by firms with technology $y_t(j) = h_t(j)$
- Prices identical and fixed: $P_t(j) = P = 1$
- Monetary policy sets i_t to ensure efficient output $v'(h_t) = 1$, unless constrained by ZLB $i_t \ge 0$
- ▶ **Result:** isomorphic to ZLB-constrained equilibrium, defining $c_t = C_t v(h_t)$, $y^* = \max_h h v(h)$.

back

Equilibrium with date 0 transfers

DEFINITION An equilibrium with date 0 transfers is $\{c_t^i, d_t^i, y_t, r_t, \overline{T}_0\}$ such that, given a transfer function $T_0(d)$:

1. $S, B \max(1)$ s.t. (3) and

$$c_0^i = y_0^i + \frac{d_1^i}{1+r_1} + T_0(d_1^i) - \bar{T}_0$$

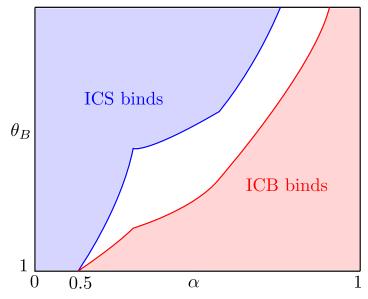
2.
$$c_t^B + c_t^S = 2y_t$$

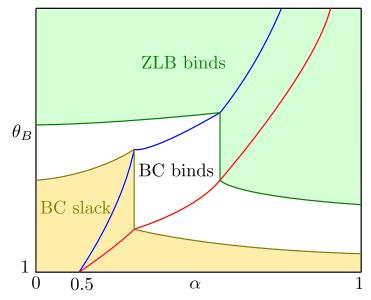
3. $r_t \ge 0, y_t \le y^*, r_t(y^* - y_t) = 0$
4. Balanced budget:

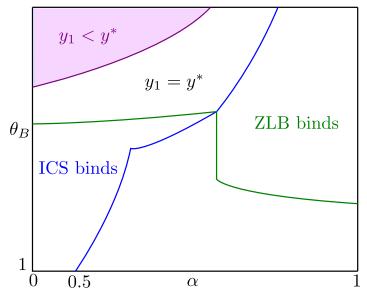
$$T_0(d_1^S) + T_0(d_1^B) = \bar{T}_0$$

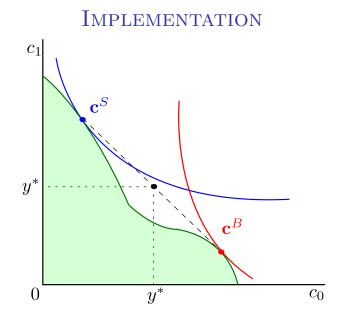
- 1. (ICS) binds in allocations favorable for borrowers; (ICB) binds in allocations better for savers. (graph)
- 2. When θ_B large, (ZLB) binds. graph
- 3. In general, full employment, even if (ZLB) binds. But unemployment may be constrained optimal if (ICS) also binds. graph

back









DATE 1 TRANSFERS: DEBT RELIEF

DEFINITION

T(d) is a **debt relief transfer function** if it has the form

$$T(d) = -\bar{T} \text{ if } d < \underline{d}$$

= $-\bar{T} + (d - \underline{d}) \text{ if } d \in [\underline{d}, \overline{d}]$
= $-\bar{T} + (\overline{d} - \underline{d}) - \tau(d - \overline{d}) \text{ if } d > \overline{d}$

for some $\overline{T} > 0$, \underline{d} , $\overline{d} > \underline{d}$, τ .

DEBT RELIEF IMPLEMENTS ALLOCATIONS IN WHICH (ICS) BINDS

