Monetary & Fiscal Policy & Inflation

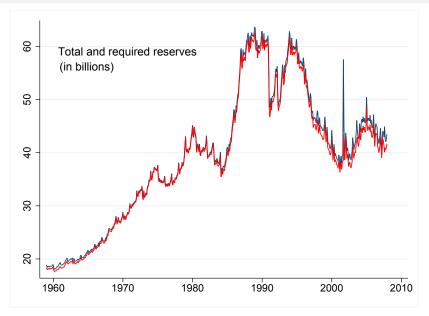
Eric M. Leeper

Indiana University

Trinity Network, November 2015

What I'll Do

- 1. Describe how the policy environment has changed
 - deregulation, new Fed behavior, developments in credit markets central to this
- 2. The new reality implies the old story about price-level determination cannot hold
 - Are money and monetary policy still "special"?
- 3. Review conventional and fiscal theory explanations of price-level determination
 - employ a very simple analytical model to make points clear
- 4. Tomorrow Sims will focus on fiscal policy and deflationary traps

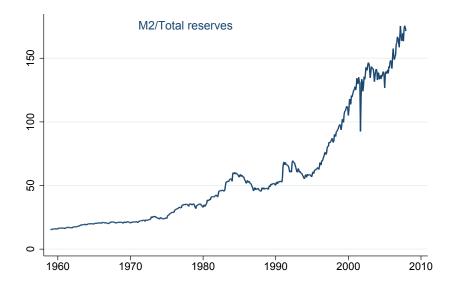

Why the Price Level?

- Why focus on price-level determination?
 - monetary & fiscal policies may have many other—and perhaps more important—effects on economy
- Price-level determination is first step
 - study price-level determination *before* studying more complicated things
 - permits use of simple models & derive sharp analytics
 - once we get price-level determination straight, can move onto study possible non-neutralities

The Old Story

- Money is "special"
- In the market for reserves:
 - frictions separate demand for "money" from demand for other assets
 - currency & reserves do not pay interest
 - banks' problem: meet reserve requirement at minimum cost
 - federal funds rate the opportunity cost of reserves
 - demand for reserves: derived from intermediaries who use deposits to "produce" loans TR^d = f(i^F, P, w, i^L, ...)
 - open-market operations change "excess reserves"
 - changes in excess reserves affect bank loans & broad money

Reserves: Total & Required

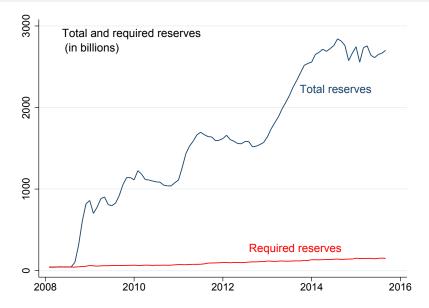


The Old Story

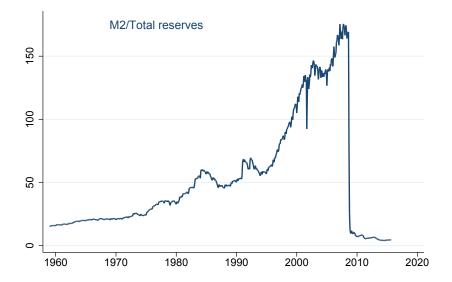
In the market for broad money:

- monetary policy affects economy through supply of broad money
- portfolio choice: how to allocate saving between "money" and interest-paying assets
- nominal interest rate the opportunity cost of money
- demand: $M^d = f(i^L, i^M, P, w, \ldots)$
- equilibrium P makes supply = demand
- The old story replies on "money" being special
 - narrow money pays no interest
 - broad money earns rate less than Treasuries
 - ensures well-defined demand for "money"

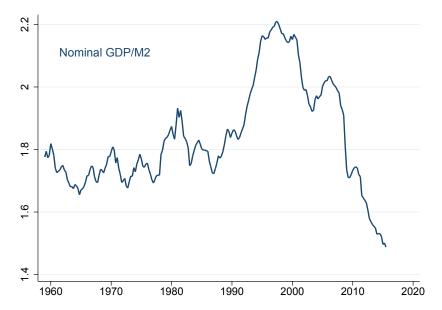
Money Multiplier

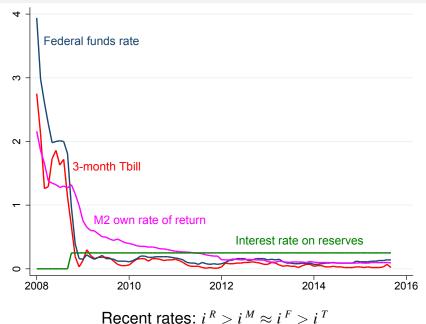


The New Reality


- Post-2008, Fed's balance sheet exploded from large-scale asset purchases
- LSAPs paid for primarily by creating reserves
- Oct. 2008, Fed begins to pay interest on reserves
- IOR higher than funds rate over period
- Reserves demand not simply a derived demand
- Banks now hold massive reserves
- Makes reserve requirements non-binding
- Old story of $\triangle \text{Reserves} \Rightarrow \triangle \text{Money} \Rightarrow \triangle P$ falls apart

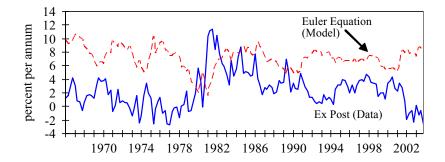
	Total	Required	Excess
Aug. 2008	\$46 B	\$44 B	\$2 B
Aug. 2009	\$829 B	\$63 B	\$766 B
Sept. 2015	\$2.7 T	\$149 B	\$2.55 T


Reserves: Total & Required


Money Multiplier

Velocity

Four Interest Rates


Has Money Lost Its Specialness?

- With IOR, monetary policy lost the margin on which reserves operates
 - with \$2.55 trillion in excess reserves, do impacts of open-market operations on reserves matter?
 - not obvious if monetary policy can affect *any* quantity margin
- Reserves & treasuries are distinct
 - reserves usable only for clearing transactions among Fed member banks
 - treasuries serve as collateral in repo market
- *i* ^T < other *i* is a sign of the "specialness" of Treasuries
 - how does demand for Treasuries affect transmission of monetary policy?
 - what does demand tell us about credit market conditions?

Has Monetary Policy Lost Its Specialness?

- New Keynesian response: we don't need to pay attention to money
- Modern analysis abstracts completely from all Ms
- Monetary policy is all about controlling short-term nominal interest rate
- Which interest rate?
 - the rate in the consumption Euler equation
 - funds rate? rate on reserves? repo rate? Tbill rate?
 - most new Keynesian models use funds rate in Euler equation
- ► Do either *i*^{*F*} or *i*^{*R*} matter for economic behavior?
 - can changes in i^F or i^R shift spectrum of interest rates (as the Fed seems to believe)?

Real Interest Rates

U.S. data and CRRA Euler equation Mismatch holds across many model specifications Source: Canzoneri, Cumby, Diba (2007)

How is Price Level Determined?

- Against this backdrop, reasonable to ask whether monetary & fiscal policies can determine P
- Let's review the two standard ways for thinking about *P* determination
 - focuses on monetary & fiscal policy
 - financial stability policy not integrated
- At the end, I return to raise several open questions

Policy Interactions: Big Picture

- Modeling convention
 - Canonical macro models assume
 - 1. MP can and does control inflation
 - 2. FP can and does ensure solvency
 - 1. MP optimal or obeys Taylor-type rule
 - unconstrained or "active"
 - 2. FP takes MP & private behavior as given and stabilizes debt
 - constrained or "passive"
- This modeling convention seemed to make sense in normal, pre-crisis times
 - embedded in textbooks (Walsh, Woodford, Galí)
- It makes MP omnipotent, FP trivial, and financial policy is assumed away

Policy Interactions: Big Picture

- Modeling convention a stretch since 2008
 - What have policies actually been doing?
 - 1. MP at or near zero lower bound
 - 2. major financial stability actions taken
 - 3. FP bouncing between stimulus & austerity
 - 1. Central banks aggressively pursuing growth
 - thrown Taylor principle out the window
 - 2. LSAPs and bailouts (private & public institutions)
 - dramatically altered initial conditions
 - 3. Recent fiscal advice from IMF:
 - 2008–2009: urgent need to stimulate
 - 2010–2011: urgent need to consolidate
 - 2012-now: urgent need for stimulative consolidation
- How can such policies anchor expectations on Fed's inflation target?
- How can such policies anchor expectations on debt stabilization?

Policy Interactions: Big Picture

- Policy responses to crisis deviated from convention
- 1. Recession & fiscal stimuli initiated sovereign debt troubles
- 2. Central banks took actions that look like fiscal policy
- 3. At the zero lower bound, fiscal impacts amplified
- 4. Banking crisis created sovereign debt crisis (Ireland)
- 5. Sovereign debt crisis begat deep recession (Greece)
- 6. Exploding central bank balance sheet raises question of fiscal backing (euro area)
- 7. Maturity structure of outstanding debt held by private sector heavily tilted toward short term (U.S.)
- Many of these actions have significant distributional consequences

Messages

- Effects of monetary policy—open-market operations— depend on the sense in which fiscal policy is "held constant"
- Effects of fiscal policy—bond-financed tax cuts—depend on the sense in which monetary policy is "held constant"
- 3. MP cannot uniquely determine inflation; FP can
- 4. MP can uniquely determine *bounded* inflation—if FP cooperates
- 5. If FP does not cooperate, MP cannot affect economy in usual ways
- 6. Without credible, enforceable fiscal rules that anchor expectations on appropriate FP behavior, fiscal disturbances *always* affect economy

General Points About Inflation

- Why does fiat currency have value?
- Because the government accepts currency—and only currency—in payment of taxes
- Inflation arises when government prints more currency than it eventually absorbs in taxes
 - people try to get rid of currency & buy things
 - pushes up prices & wages
- Government can soak up currency by selling bonds
 - does this when it spends more—handing out currency—than it taxes—soaking up currency
- Nominal bonds—like fiat currency—are promises to pay back more currency in future
- If government doesn't soak up bonds with taxes...inflation

General Points About Inflation

- Just as money gets its value from taxes...
- Monetary policy gets its power from fiscal backing
- When fiscal backing is assured, MP operates as taught in textbooks
 - MP can control inflation
 - higher interest rates—open-market sale of bonds—reduce consumption & inflation
- But only if future taxes rise to soak up bonds
 - higher taxes eliminate the wealth effects of higher interest payments on government debt
- Otherwise, higher rates...
 - raises wealth, reduce value of bonds, increase aggregate demand & inflation
- It's all about fiscal backing

Overview of Old & New Views

Central to old view is

$$MV = PY$$

or

$$C_t = E_t C_{t+1} - \sigma(i_t - E_t \pi_{t+1})$$

Central to new view is

$$\frac{(1+i^{M})M_{t-1}+Q_{t}B_{t-1}}{P_{t}}=E_{t}PV(surpluses_{t+k})$$

- All models embed both equilibrium relationships
- Differences emerge from causal links in two views
- Causal links require moving beyond equilibrium conditions

- Endowment economy at the cashless limit; complete financial markets, one-period nominal debt
- Representative household maximizes

$$E_0\left\{\sum_{t=0}^{\infty}\beta^t U(C_t)\right\}$$

subject to sequence of flow budget constraints

$$P_{t}C_{t} + P_{t}\tau_{t} + E_{t}[Q_{t,t+1}B_{t}] = P_{t}Y_{t} + P_{t}Z_{t} + B_{t-1}$$

given $B_{-1} > 0$

- $Q_{t,t+1}$: nominal price at *t* of an asset that pays \$1 at t+1
- *m*_{t+1}: real contingent claims price
- $Q_{t,t+1} = \frac{P_t}{P_{t+1}} m_{t,t+1}$: no-arbitrage condition
- Nominal interest rate, R_t : $\frac{1}{R_t} = E_t[Q_{t,t+1}]$

Can write HH's real intertemporal b.c. as

$$E_t \sum_{j=0}^{\infty} m_{t,t+j} C_{t+j} = \frac{B_{t-1}}{P_t} + E_t \sum_{j=0}^{\infty} m_{t,t+j} (Y_{t+j} - s_{t+j})$$

$$s_t \equiv \tau_t - z_t$$

- $m_{t,t+j} \equiv \prod_{k=0}^{j} m_{t,t+k}$ is real discount factor, $m_{t,t} = 1$
- HH choices also satisfy the transversality condition

$$\lim_{T\to\infty}E_t\left[m_{t,T}\frac{B_{T-1}}{P_T}\right]=0$$

It is not optimal for HHs to overaccumulate assets

► Impose equilibrium, $C_t = Y$, and TVC to get two eqm conditions

$$\frac{1}{R_t} = \beta E_t \frac{P_t}{P_{t+1}} \equiv \beta E_t \frac{1}{\pi_{t+1}}$$
$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t s_{t+j}$$

 $s_t \equiv \tau_t - z_t$ (We assume $0 < E_t PV(s) < \infty$)

- Price sequence {P_t} must satisfy these to be an eqm (markets clear & HH's optimization problem solved)
- Without additional restrictions from policy behavior, there are many possible eqm {P_t} sequences
- Note: we do not distinguish money & credit markets
 - no financial frictions

Specify policy rules & government budget constraint

$$\frac{1}{R_t} = \frac{1}{R^*} + \alpha \left(\frac{1}{\pi_t} - \frac{1}{\pi^*}\right)$$
$$s_t = s^* + \gamma \left(\frac{B_{t-1}}{P_t} - b^*\right)$$
$$\frac{E_t[Q_{t,t+1}B_t]}{P_t} + s_t = \frac{B_{t-1}}{P_t}$$

Steady state

$$rac{B_{t-1}}{P_t} = b^*, \quad s^* = (1-\beta)b^*, \quad R^* = rac{\pi^*}{\beta}, \quad m^* = eta$$

- Combine MP rule w/ Fisher equation
- Combine FP rule w/ government budget constraint
- Dynamical system in inflation, π_t, and real debt, b_t, after imposing asset-pricing relations and market clearing

$$E_t \left(\frac{1}{\pi_{t+1}} - \frac{1}{\pi^*}\right) = \frac{\alpha}{\beta} \left(\frac{1}{\pi_t} - \frac{1}{\pi^*}\right)$$
$$\frac{B_t}{P_{t+1}} - b^* = \frac{1 - \gamma}{\beta} \left(\frac{B_{t-1}}{P_t} - b^*\right)$$

where $\frac{B_t}{P_{t+1}} \equiv b_t$ and $b^* = \frac{B_t}{P_{t+1}}$ in steady state and in equilibrium $m_{t,t+1} = \beta \frac{U'(C_{t+1})}{U'(C_t)} = \beta \frac{U'(Y)}{U'(Y)} = \beta$

Two Tasks of Policy

- Monetary & fiscal policy have two tasks: (1) control inflation; (2) stabilize debt
- Two different policy mixes that can accomplish these tasks
- **Regime M:** conventional assignment—MP targets inflation; FP targets real debt (called active MP/passive FP)
- **Regime F:** alternative assignment—MP maintains value of debt; FP controls inflation (called passive MP/active FP)
 - Regime M: conventional new Keynesian
 - Regime F: fiscal theory of price level

Regime M Policy Behavior

- MP behavior completely familiar: target inflation by aggressively adjusting nominal interest rates
- FP adjusts future surpluses to cover interest plus principal on debt
- In terms of policy rules

Regime M: $\alpha/\beta > 1$ & $\gamma > 1 - \beta$

- Taylor principle
- Taxes adjust to service & retire debt

Regime M Equilibrium

Unique bounded equilibrium is

$$\pi_t = \pi^*$$

And expected evolution of government debt is

$$E_t\left(\frac{B_t}{P_{t+1}}-b^*\right)=\frac{1-\gamma}{\beta}\left(\frac{B_{t-1}}{P_t}-b^*\right)$$

which ensures $E_t b_T \rightarrow b^*$ as $T \rightarrow \infty$

But...also a continuum of equilibria with

$$\lim_{T\to\infty}\pi_T=\infty$$

- Neither MP nor private behavior rules out equilibria with π_t = ∞ or deflationary traps
- This can be resolved only by fiscal policy (Sims tomorrow)

Regime M Fiscal Policy

- What is FP doing in Regime M?
 - any shock that changes debt must create the expectation that future surpluses will adjust to stabilize debt's value
 - people must believe adjustments will occur eventually
 - eliminates wealth effects from government debt
 - for MP to target inflation, fiscal expectations must be anchored on FP adjusting to maintain value of debt
- ► An aside: Can rule out equilibria with $\pi_t \to \infty$ where $b_t \to 0$, so $s_t \to 0$
 - FP commits to a fixed floor value of debt, <u>b</u>
 - surplus rule becomes $\underline{s} = (1 \beta)\underline{b}$
 - this requires a switch in fiscal regime
 - ironically, by "passively" supporting MP, FP permits explosive inflation

An Equilibrium Condition

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- In Regime M...
 - MP delivers equilibrium inflation process
 - taking inflation as given, FP must choose compatible surplus policy
 - "compatible" means: stabilizes debt
 - imposes restrictions on $E_t PV(s)$

Primer on Monetary-Fiscal Interactions

- Monetary & fiscal policy have two tasks: (1) control inflation; (2) stabilize debt
- Beautiful symmetry: two different policy mixes that can accomplish these tasks
- **Regime M:** conventional assignment—MP targets inflation; FP targets real debt (called active MP/passive FP)
- **Regime F:** alternative assignment—MP maintains value of debt; FP controls inflation (called passive MP/active FP)
 - ► Regime M: conventional NK
 - Regime F: FTPL
 - Regime F arises in two ways

1. Sargent & Wallace's unpleasant monetarist arithmetic

Primer on Monetary-Fiscal Interactions

- Unpleasant monetarist arithmetic
 - economy hits the fiscal limit
 - surpluses unresponsive to debt
 - seigniorage adjusts to stabilize debt
 - produces high & volatile inflation
- Many countries have guarded against this
 - central bank independence
 - clear mandate to control inflation—e.g., inflation targeting
- Designed to force FP to be passive
- Will focus on second way Regime F can arise

Primer on Monetary-Fiscal Interactions

- Monetary & fiscal policy have two tasks: (1) control inflation; (2) stabilize debt
- Beautiful symmetry: two different policy mixes that can accomplish these tasks
- **Regime M:** conventional assignment—MP targets inflation; FP targets real debt (called active MP/passive FP)
- **Regime F:** alternative assignment—MP maintains value of debt; FP controls inflation (called passive MP/active FP)
 - ► **Regime M:** conventional NK
 - Regime F: FTPL
 - Regime F arises in two ways
 - 1. Sargent & Wallace's unpleasant monetarist arithmetic
 - 2. fiscal theory of the price level

Monetary-Fiscal Interactions: Regime F

- Governments issue mostly nominal (non-indexed, local currency) bonds
 - 90% U.S. debt; 80% U.K. debt; 95% Euro-area debt; most of Australian, Japanese, Korean, New Zealand, & Swedish debt
 - increasing important in Latin America: Chile (92%), Brazil (89%), Colombia (77%), Mexico (75%)
- In Regime F:
 - ► FP sets primary surpluses independently of debt
 - MP prevents interest payments on debt from destabilizing debt
- Nominal debt is revalued to align its value with expected surpluses

Regime F Policy Behavior

- FP responds weakly (or not at all) to state of government indebtedness
- MP prevents nominal interest rate from reacting strongly to inflation
- In terms of policy rules

Regime F:
$$0 < \alpha/\beta < 1$$
 & $\gamma < 1 - \beta$

Focus on special case

$$\alpha = 0 \& \gamma = 0$$

- Pegged nominal interest rate (e.g., ZLB)
- FP pursues objectives other than debt stabilization

Regime F Equilibrium

Pegs expected inflation

$$E_t\left(\frac{1}{\pi_{t+1}}\right) = \frac{1}{\beta R^*} = \frac{1}{\pi^*}$$

Price level determined by

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- At t, B_{t-1} predetermined and $E_t S_{t+j}$ a number
- *P_t* must adjust to equate value of debt to expected cash flows

Regime F Transmission Mechanism

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- Increase in current or expected transfers
 - no offsetting taxes expected, household wealth rises
 - lower expected path of surpluses reduces "cash flows," lowers value of debt
 - individuals shed debt in favor of consumption, raising aggregate demand
 - higher current & future inflation and economic activity
 - Iong bonds shift inflation into future
- ► Demand for debt ⇔ aggregate demand

Regime F Determinacy

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- ▶ How do we know that no other $\{P_t\}$ sequence is an equilibrium (especially ones with $P_t \rightarrow \infty$)?
- Suppose P_t is "too low": debt over-valued relative to cash flows
 - agents substitute out of debt and into buying goods
 - higher aggregate demand drives up P_t until value of debt consistent with E_tPV(s)
- Symmetric argument if P_t is "too high"

An Equilibrium Condition

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- In Regime F...
 - FP delivers unique equilibrium price process
 - taking inflation as given, MP must choose compatible interest rate policy
 - "compatible" means: stabilizes debt
 - imposes restrictions on P_t (& on MP, if price level to remain stable)

More on the Equilibrium Condition

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t \left[s_{t+j} \right]$$

- Ubiquitous: holds in any model, in any regime
 - cannot be used to "test" for regime
- It is not an "intertemporal government budget constraint"
 - have imposed market clearing, Euler equations, transversality (from private behavior)
- Government is *not* restricted to choose {s_t} to satisfy it for any {P_t} (but it is free to do so)
- Cochrane calls it a "debt valuation equation"
 - ▶ with only one-period debt, B_{t-1}/P_t is market value of debt

Why Fiscal Theory \neq Unpleasant Arithmetic

Equilibrium conditions for nominal and real debt

Nominal:
$$B_{t-1} = P_t \sum_{j=0}^{\infty} \beta^j E_t \left[\tau_{t+j} - z_{t+j} + \frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} \right]$$

Real: $v_{t-1} = \sum_{j=0}^{\infty} \beta^j E_t \left[\tau_{t+j} - z_{t+j} + \frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} \right]$

- Hypothetical increase in P_t , all else fixed
 - raises nominal backing: support more nominal debt with no change in surpluses or seigniorage
 - Iowers real backing: reduces seigniorage revenues
- Fiscal Theory is not about seigniorage: if M/P tiny, higher P_t raises backing of nominal debt but not of real debt
- Unpleasant Arithmetic is about seigniorage: growing real debt requires growing seigniorage & inflation

Role of Debt Maturity Structure: I

Allow one- and two-period zero-coupon nominal bonds: B_t(t+1), B_t(t+2); equilibrium condition is

$$\frac{B_{t-1}(t)}{P_t} + \beta B_{t-1}(t+1)E_t \frac{1}{P_{t+1}} = \sum_{j=0}^{\infty} \beta^j E_t s_{t+j}$$

- MP determines the timing of inflation
 - stabilize expected inflation: forces adjustment in P_t
 - lean against current inflation: forces adjustment in $E_t(1/P_{t+1})$
 - ► tradeoff depends on maturity structure, $B_{t-1}(t+1)/B_{t-1}(t)$
 - ► shorter average maturity \Rightarrow need larger $\Delta E_t(1/P_{t+1})$ to compensate for given $\Delta(1/P_t)$
- Message: MP not impotent, but it cannot control both actual & expected inflation

Role of Debt Maturity Structure: II

- Allow a consol: perpetuity that pays \$1 each period
- Government budget constraint

$$\frac{Q_t B_t}{P_t} + s_t = \frac{(1+Q_t)B_{t-1}}{P_t}$$

Asset-pricing relation, in equilibrium

$$Q_{t} = \beta E_{t} \frac{P_{t}}{P_{t+1}} (1 + Q_{t+1}) = \sum_{j=1}^{\infty} \beta^{j} E_{t} \frac{P_{t}}{P_{t+j}}$$

- Central bank controls R_t : $1/R_t = P_{St} = \beta E_t(P_t/P_{t+1})$
- Intertemporal equilibrium condition

$$\frac{(1+Q_t)B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t s_{t+j}$$

 FP determines the present value of inflation; MP determines the *timing* of inflation

Role of Debt Maturity Structure: II

$$Q_{t} = E_{t} \sum_{j=0}^{\infty} \left(\frac{1}{\prod_{i=0}^{j} R_{t+i}} \right) = E_{t} \sum_{j=1}^{\infty} \beta^{j} \left(\frac{1}{\prod_{i=1}^{j} \pi_{t+i}} \right)$$
$$\frac{(1+Q_{t})B_{t-1}}{P_{t}} = \sum_{j=0}^{\infty} \beta^{j} E_{t} s_{t+j}$$

- Any path of {P_t} consistent with these conditions is an equilibrium
- By choosing a (constrained) path for {R_t}, MP determines when inflation occurs
- Consider two pegged paths for R_t —† & *—with $R^{\dagger} > R^* \Rightarrow Q^{\dagger} < Q^*$
 - $\pi_t^{\dagger} < \pi_t^*$ but future $\pi^{\dagger} >$ future π^*
 - a higher nominal rate lowers *current* inflation, but raises *future* inflation

Generalizing

- Introduce maturity structure:
 - constant geometric decay at rate ρ so

$$B_{t-1}(t+j) = \rho^j B_{t-1}$$

- Q_t is price of bond portfolio, B_{t-1}
- Endogenous real interest rate: r_{t,t+k} is k-period real discount rate
- High-powered money: M_t pays interest i^M_t
- Government liabilities valuation equation

$$\frac{(1+i_t^M)M_{t-1}+Q_tB_{t-1}}{P_t} = E_t \sum_{k=0}^{\infty} \frac{1}{r_{t,t+k}} S_{t+k}$$

S: primary surplus inclusive of seigniorage

Flight to Quality

$$\frac{(1+i_t^M)M_{t-1}+Q_tB_{t-1}}{P_t} = E_t \sum_{k=0}^{\infty} \frac{1}{r_{t,t+k}} S_{t+k}$$

- Demand for treasuries drove down i^T and r_{t,t+k}'s
- For given path of surpluses...
 - raises value of bonds, Q_t
 - reduces price level P_t
- ▶ Fed raised *i*^M from 0 to 0.25
 - LSAPs massively increased M
 - crisis also expanded nominal debt
- Tend to counter higher Q_t & lower P_t
- A very different perspective from conventional policy regime

Liftoff

$$\frac{(1+i_t^M)M_{t-1}+Q_tB_{t-1}}{P_t}=E_t\sum_{k=0}^{\infty}\frac{1}{r_{t,t+k}}S_{t+k}$$

- As interest rates "normalize"...
 - $r_{t,t+j}$'s rise toward historic levels
 - given path of surpluses \Rightarrow much lower present value
 - bonds less attractive: substitute out of bonds into buying goods
 - raises aggregate demand & inflation
- Alternative is a large increase in surpluses
 - higher taxes eliminate wealth effects of higher debt service
 - ameliorates increase in aggregate demand
 - given high debt level, this calls for a large fiscal contraction in future

Open Questions

- 1. What are the service flows from government liabilities—reserves & debt at different maturities?
- 2. Are total reserves, the monetary base, or broad money relevant for the price level?
- 3. Which interest rate belongs in the consumption Euler equation?
- 4. Is the marginal unit of short-term cash still traded in the fed funds market?
- 5. Can the Fed affect interest rates on credit?

Open Questions

- 6. Can supply of treasuries affect interest rates on credit?
- 7. Can instability in credit markets undermine price stability?
- 8. Can instability in FP & value of government bonds affect credit flows?
- 9. Should the Fed consider moving to target the reportate?