

Macro, Money and Finance: A Continuous Time Approach

Markus K. Brunnermeier & Yuliy Sannikov
Princeton University

Trinity of Stability Conference Princeton, Nov. 6th, 2015

- Price stability
 Monetary policy
- Financial stability Macroprudential policy
- Fiscal debt sustainabilityFiscal policy

- Short-term interest
- <--inter-<------> action
- Policy rule (terms structure)

- Reserve requirements
- Collateral policy Margins/haircuts
- Capital controls

Macro, Money and Finance

- Endogenous level
 - Persistence & amplification
 - "Net worth trap"
- Endogenous risk dynamics
 - Tail risk
 - Crisis probability
 - "Volatility Paradox"
- Illiquidity and liquidity mismatch
 - Undercapitalized sectors
 - Time varying risk premia (dynamics)
 - External funding premium
- Value of money
- Welfare
 - Interaction: regulatory, monetary and other policies

History: Macro & Finance

Verbal Reasoning (qualitative)

Fisher, Keynes, ...

Macro

Finance

- Growth theory
 - Dynamic (cts. time)
 - Determinisitc

Portfolio theory

Stochastic

- Introduce stochastic
 - Discrete time
 - Brock-Mirman Stokey-Lucas
 - Kydland-Prescott
 - DSGE models

- Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

Cts. time macro with financial frictions

Amplification & Persistence

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

Amplification & Persistence

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)

- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)

Amplification & Persistence

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)

- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)
- "once and for all shock"
 - no volatility dynamics

Impulse response vs. Volatility dynamics

- "once and for all shock"= no uncertainty about length of slump
- Sequence of adverse shock

Why continuous time modeling?

- Characterization for volatility and amplification
 - Discrete: only impulse response functions
 - Only for shocks starting at the steady state
 - Only expected path fan charts help somewhat
- More analytical steps
 - Return equations
 - Next instant returns are essentially log normal (easy to take expectations)
 - Explicit net worth and state variable dynamics
 - Continuous: only slope of price function determines amplification
 - Discrete: need whole price function (as jump size can vary)
- Numerically simple solve differential equations
- Discrete: IES/RA within period $= \infty$, across periods $1/\gamma$

Cts. time: special features of diffusions

- Continuous path fast enough deleveraging
 - Never jumps over a specific point, e.g. insolvency point
- Implicit assumption: can react to small price changes
 - Can continuously delever as wealth goes down
 - Makes them more bold ex-ante

Recent macro literature (in cts time)

- Core
 - BrunSan (2014), Basak & Cuoco (1998) He & Krishnamurthy (2012,13), DiTella (2013), Isohätälä et al. (2014)
- Intermediation/shadow banking
 - Phelan (2014), Adrian & Boyarchenko (2012,13), Huang (2014), Moreira & Savov (2014), Klimenko & Rochet (2015)
- Quantification
 - He & Krishnamurthy (2014), Mittnik & Semmler (2013)
- International
 - BruSan (2015), Maggiori (2013)
- Monetary
 - "The I Theory of Money" (2012), Drechsler et al. (2014)
- ...

Financial frictions

Costly state verification (BGG)

- Leverage constraints
 - Exogenous limit (Bewley/Ayagari)
 - Collateral constraints
 - Next period's price (KM) $Rb_t \le q_{t+1}k_t$
 - Next periods volatility (VaR)
 - Current price
- Incomplete markets
 - Endogenous leverage

Roadmap

- Why continuous time?
- Literature

- Simple model
 - With undesirable features
 - Add portfolio choice with general utility function
- Full model
 - With all desired features
 - Add equity issuance

A simple model

Experts

- Output: $y_t = ak_t$
- lacktriangle Consumption rate: c_t
- Investment rate: l_t $\frac{dk_t}{k_t} = (\Phi(l_t) \delta)dt + \sigma dZ_t$

 $-E_0\left[\int_0^\infty e^{-\rho t}\log(c_t)\,dt\right]$

Can only issue risk-free debt

Households

No output:

a = 0

• Consumption rate: \underline{c}_t

 $E_0 \left[\int_0^\infty e^{-\rho t} \log(c_t) \, dt \right]$

Equilibrium

- An equilibrium consists of functions that for each history of macro shocks $\{Z_s, s \in [0, t]\}$ specify
 - $lack q_t$ the price of capital
 - k_t , $\underline{k}_t = 0$ capital holdings
 - $c_t \ge 0$, $\underline{c_t} = 0$ consumption of representative expert and households
 - $\mathbf{L}_t, \iota_t = 0$ rate of internal investment, per unit of capital
 - r the risk-free rate
- such that
 - lacktriangleright intermediaries and households maximize their utility, taking prices q_t as given and
 - markets for capital and consumption goods clear

Equilibrium

Equilibrium is a map

Histories of shocks

prices, allocations

wealth distribution

$$\eta_t = \frac{N_t}{q_t K_t} \in (0,1)$$

experts' wealth share

- Experts, HH solve optimal investment, portfolio, consumption
- Markets clear

Solution steps

- 1. Postulate endogenous processes
 - $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$
 - Returns from holding capital
- 2. Equilibrium conditions
 - Agents' optimization
 - Internal investment (new capital formation)
 - Optimal portfolio choice
 - Optimal consumption
 - Market clearing conditions
- 3. Law of motion of state variable
 - ullet wealth (share) distribution η_t
- 4. Express in ODEs of state variable

1. Postulate endogenous process

Postulate

$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

Recall

•
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$
 $dk_t/k_t = (\Phi(\iota_t) - \delta) + \sigma dZ_t$

Return on capital

•
$$dr_t^k = \frac{a - \iota_t}{\underbrace{q_t}} dt + \underbrace{\frac{d(k_t q_t)}{k_t q_t}}_{\text{capital}}$$
 gains

•
$$\frac{d(k_tq_t)}{k_tq_t} = \left(\Phi(\iota_t) - \delta + \mu_t^q + \sigma\sigma_t^q\right)dt + \left(\sigma + \sigma_t^q\right)dZ_t$$
 by Ito's product rule

In this simple model it will turn out that q is constant, i.e. $\mu_t^q = \sigma_t^q = 0$.

2. Equilibrium optimality conditions

- Investment rate (capital formation)
 - Static problem

$$\max_{\iota} \Phi(\iota_t) - \iota_t/q_t$$

 $\max_{\iota} \Phi(\iota_t) - \iota_t/q_t$ • FOC: $\Phi'(\iota_t) = \frac{1}{q_t}$ (marginal Tobin's q)

- b. Consumption choice
 - $c_t = \rho N_t$

due to log utility

- Portfolio choice
 - Volatility of wealth = Sharpe ratio of risky investment

2. Equilibrium market clearing conditions

Goods market price of capital

$$\rho q_t K_t = (a - \iota_t(q_t)) K_t$$

- $q_t=q=\cdots$ Special case: $\Phi(\iota)=\frac{\log(\kappa\iota+1)}{\kappa}$ $\iota=\frac{(q-1)}{\kappa}$ $q=\frac{a+1/\kappa}{r+1/\kappa}$
- Risk free rate

•
$$dr_t^k = \underbrace{\frac{a-\iota_t}{q_t}}_{\rho,dividend} + \underbrace{(\Phi(\iota_t)-\delta)dt + \sigma dZ_t}_{capital}$$
yield
$$\underbrace{\frac{a-\iota_t}{q_t}}_{p,dividend}$$

- Sharpe ratio:
- Volatility of net worth:
- Sharpe ratio = volatility of N_t

$$\frac{\rho + \Phi(\iota) - \delta - r_t}{\sigma}$$

$$\frac{q_t K_t}{N_t} \sigma = \frac{\sigma}{\eta_t}$$

$$r_t = \rho + \Phi(\iota) - \delta - \frac{\sigma^2}{\eta_t}$$

\blacksquare 3. Law of motion of η_t

$$\frac{dN_t}{N_t} = r_t dt + \frac{\sigma}{\eta_t} * \frac{\sigma}{\eta_t} dt + \frac{\sigma}{\eta_t} dZ_t - \underbrace{\rho dt}_{consumption}$$

• Use Ito ratio rule for $\eta_t = N_t/(q_t K_t)$

$$\frac{d\eta_t}{\eta_t} = \frac{(1-\eta_t)^2}{\eta_t^2} \sigma^2 dt + (1-\eta_t) \sigma dZ_t$$

Observations

$$\frac{d\eta_t}{\eta_t} = \frac{(1-\eta_t)^2}{\eta_t^2} \sigma^2 dt + (1-\eta_t) \sigma dZ_t$$

- ullet Wealth share η moves with macro shock dZ_t
- In the long run experts "save their way out", $\eta \to 1$
- Sharpe ratio $\frac{\rho + \Phi(\iota) \delta r_t}{\sigma}$
 - Increases as η goes down, (to ∞ as $\eta \to 0$)
 - Achieved through a lower risk free rate
- q is constant
 - No endogenous risk
 - No amplification
 - No volatility effects

Generalizing preference: portfolio choice

- 1. Also postulate process for marginal utility $d\theta_t/\theta_t = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t$ SDF: $e^{\rho s}\theta_{t+s}/\theta_t$
- 2. Portfolio choice: Optimality condition
 - For asset A with payoff process $dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t$

$$0 = \mu_t^{\theta} - \rho + \mu_t^A + \sigma_t^A \sigma_t^{\theta}$$

- Intuition:
 - i. Discrete time analog: Take log of $1 = E_t[SDF_{t,t+s}(R_{t,t+s})]$
 - ii. Consider wealth n_t invested in A, so that $dn_t/n_t=dr_t^A$ $n_{t+s}e^{-\rho s}\frac{\theta_{t+s}}{\theta_t}$ is a martingale

Generalizing preference: portfolio choice

- 1. Also postulate process for marginal utility $d\theta_t/\theta_t = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t \qquad \text{SDF: } e^{\rho s} \theta_{t+s}/\theta_t$
- 2. Portfolio choice: Optimality condition
 - For asset A with payoff process $dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t$

$$0 = \mu_t^{\theta} - \rho + \mu_t^A + \sigma_t^A \sigma_t^{\theta}$$

- Intuition:
 - i. Discrete time analog: Take log of $1 = E_t[SDF_{t,t+s}(R_{t,t+s})]$
 - ii. Consider wealth n_t invested in A, so that $dn_t/n_t=dr_t^A$ $n_{t+s}e^{-\rho s}\frac{\theta_{t+s}}{\theta_t}$ is a martingale
- For risk free asset

$$0 = \mu_t^{\theta} - \rho + r$$

• Sharpe ratio

$$\frac{\mu_t^A - r_t}{\sigma_t^A} = -\sigma_t^\theta$$

Generalizing preference: portfolio choice

- 1. Also postulate process for marginal utility $d\theta_t/\theta_t = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t$ SDF: $e^{\rho s}\theta_{t+s}/\theta_t$
- 2. Portfolio choice: Optimality condition
 - For asset A with payoff process $dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t$

$$0 = \mu_t^{\theta} - \rho + \mu_t^A + \sigma_t^A \sigma_t^{\theta}$$

- Intuition:
 - Discrete time analog: Take log of $1 = E_t[SDF_{t,t+s}(R_{t,t+s})]$
 - Consider wealth n_t invested in A, so that $dn_t/n_t = dr_t^A$ $n_{t+s}e^{-\rho s}\frac{\theta_{t+s}}{\theta_{t}}$ is a martingale
- For risk free asset
- Sharpe ratio

$$0 = \mu_t^{\theta} - \rho + r$$

$$\frac{\mu_t^A - r_t}{\sigma_t^A} = -\sigma_t^\theta$$

Example 1:
$$u(c) = \log(c)$$

$$0 = \mu_t^{\theta} - \rho + r$$
 $\theta_t = \frac{1}{c_t} = \frac{1}{\rho n_t} \Rightarrow \sigma_t^{\theta} = -\sigma_t^n$

Generalizing preference: portfolio choice

- 1. Also postulate process for marginal utility $d\theta_t/\theta_t = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t$ SDF: $e^{\rho s}\theta_{t+s}/\theta_t$
- 2. Portfolio choice: Optimality condition
 - For asset A with payoff process $dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t$

$$0 = \mu_t^{\theta} - \rho + \mu_t^A + \sigma_t^A \sigma_t^{\theta}$$

- Intuition:
 - Discrete time analog: Take log of $1 = E_t[SDF_{t,t+s}(R_{t,t+s})]$
 - Consider wealth n_t invested in A, so that $dn_t/n_t = dr_t^A$ $n_{t+s}e^{-\rho s}\frac{\theta_{t+s}}{\theta_{t}}$ is a martingale
- For risk free asset
- Sharpe ratio

$$0 = \mu_t^{\theta} - \rho + r$$

$$\frac{\mu_t^A - r_t}{\sigma_t^A} = -\sigma_t^\theta$$

Example 1:
$$u(c) = \log(c)$$

$$\theta_t = \frac{1}{c_t} = \frac{1}{\rho n_t} \Rightarrow \sigma_t^{\theta} = -\sigma_t^n$$

Example 2:
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

 $\sigma_t^{\theta} = -\gamma \sigma_t^{c}$ 26

Desired model properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Net worth trap look at stationary distribution
- Endogenous risk
 - Fat tails
 - Assets are more correlated
 - SDF vs. cash-flow news
- Volatility paradox
- Financial innovation less stable economy

Full model

Experts

- Output: $y_t = ak_t$
- Consumption rate: c_t
- Investment rate: $\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma dZ_t$

Households

$$y_t = \underline{ak}_t$$

a $\geq \underline{a}$ Output: $\underline{y}_t = \underline{ak}_t$ $\delta \leq \underline{\delta}$ Consumption rate: \underline{c}_t

• Investment rate: $\frac{dk_t}{k_t} = \left(\Phi(\underline{\iota}_t) - \underline{\delta}\right) dt + \sigma dZ_t$

$$E_0 \left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt \right]$$

- Can issue
 - Risk-free debt
 - Equity, but most hold $\chi_t \geq \chi$

Experts

Households

• Experts must hold fraction $\chi_t \geq \underline{\chi}$

Solution steps

- 1. Postulate endogenous processes
 - $dq_t/q_t = d\theta_t/\theta_t = d\theta_t/\theta_t = d\theta_t/\theta_t = d\theta_t/\theta_t = d\theta_t/\theta_t$
- 2. Equilibrium conditions
 - Agents' optimization
 - Internal investment (new capital formation)
 - Optimal portfolio choice with equity issuance
 - Optimal consumption
 - Market clearing conditions
- 3. Law of motion of state variable
 - wealth (share) distribution η_t
- 4. Express in ODEs of state variable

2. Optimal portfolio condition

Without equity issuance

$$\frac{\frac{a-\iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} = -\sigma_t^{\theta}$$

$$\frac{\frac{\underline{u}-\underline{\iota}_t}{q_t}+\Phi(\underline{\iota}_t)-\delta+\mu_t^q+\sigma\sigma_t^q-r_t}{\sigma+\sigma^q}\leq -\sigma_t^{\underline{\theta}}\quad\text{with equality if }\psi_t<1$$

2. Optimal portfolio condition

Without equity issuance

$$\frac{\frac{a-\iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} = -\sigma_t^{\theta} \chi_t \left(-\sigma_t^{\theta} \right) + (1 - \chi_t) \left(-\sigma_t^{\theta} \right)$$

$$\frac{\frac{\underline{a}-\underline{\iota}_t}{q_t}+\Phi(\underline{\iota}_t)-\delta+\mu_t^q+\sigma\sigma_t^q-r_t}{\sigma+\sigma^q}\leq -\sigma_t^{\underline{\theta}}\quad\text{with equality if }\psi_t<1$$

If experts require higher returns than HH

• if
$$-\sigma^{\theta} > -\sigma^{\theta}_{t} \Rightarrow \chi_{t} = \underline{\chi}$$

• Otherwise $-\sigma^{\theta} = -\sigma^{\theta}_{t}$

- $-\frac{(a-\underline{a})/q_t}{\sigma+\sigma_{\star}^q} \geq \underline{\chi}$ with equality if $\psi_t < 1$

\blacksquare 3. Law of motion of η_t

$$\frac{dN_t}{N_t} = r_t dt + \underbrace{\frac{\chi_t \psi_t}{\eta_t} (\sigma + \sigma_t^q)}_{risk} \underbrace{\left(-\sigma_t^\theta\right)}_{risk} dt + \underbrace{\frac{\chi_t \psi_t}{\eta_t} \left(\sigma + \sigma_t^q\right)}_{\eta_t} dZ_t - \underbrace{\frac{C_t}{N_t}}_{N_t} dt$$

• Use Ito ratio rule for $\eta_t = N_t/(q_t K_t)$

$$\frac{d\eta_t}{\eta_t} = ..$$

- Convert equilibrium conditions and law of motion
- Replace terms μ_t^q , μ_t^θ , σ_t^q , σ_t^θ , ... with expressions containing derivatives of q and θ using Ito's lemma

- Convert equilibrium conditions and law of motion
- Replace terms μ_t^q , μ_t^θ , σ_t^q , σ_t^θ , ... with expressions containing derivatives of q and θ using Ito's lemma

- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B

- Convert equilibrium conditions and law of motion
- Replace terms μ_t^q , μ_t^θ , σ_t^q , σ_t^θ , ... with expressions containing derivatives of q and θ using Ito's lemma

- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
 - 1. Postulate $dE_t = \mu_t^E E_t dt + \sigma_t^E E_t dZ_t$
 - 2. Equilibrium condition: $r = \mu_t^E C/E_t$

- Convert equilibrium conditions and law of motion
- Replace terms μ_t^q , μ_t^θ , σ_t^q , σ_t^θ , ... with expressions containing derivatives of q and θ using Ito's lemma

- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
 - 1. Postulate $dE_t = \mu_t^E E_t dt + \sigma_t^E E_t dZ_t$
 - 2. Equilibrium condition: $r = \mu_t^E c/E_t$
 - Ito lemma on E(V): $\mu_t^E E_t = E'(V_t) r V_t + \frac{1}{2} \sigma^2 V_t^2 E''(V_t)$

- Convert equilibrium conditions and law of motion
- Replace terms μ_t^q , μ_t^θ , σ_t^q , σ_t^θ , ... with expressions containing derivatives of q and θ using Ito's lemma
- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
 - 1. Postulate $dE_t = \mu_t^E E_t dt + \sigma_t^E E_t dZ_t$
 - 2. Equilibrium condition: $r = \mu_t^E C/E_t$
 - Ito lemma on E(V): $\mu_t^E E_t = E'(V_t) r V_t + \frac{1}{2} \sigma^2 V_t^2 E''(V_t)$
 - 2. New equilibrium condition: $r = \frac{E'(V)rV + \frac{1}{2}\sigma^2V_t^2E''(V_t)}{E(V)} \frac{C}{E(V)}$
 - Two boundary conditions
 - 1. $E(V_B) = 0$
 - 2. $V E(V) \rightarrow \frac{c}{r}$ as $V \rightarrow \infty$

Amplification – closed form

$$\sigma_t^{\eta} = \frac{\frac{\chi_t \psi_t}{\eta_t} - 1}{1 - \left[\frac{\chi_t \psi_t}{\eta_t} - 1\right] \frac{q'(\eta_t)}{q(\eta_t)/\eta_t}} \sigma$$

$$\text{Market illiquidity}$$
(price impact elasticity)

$$\frac{\chi_t \psi_t}{n_t} - 1$$

Leverage effect
$$\frac{\chi_t \psi_t}{\eta_t} - 1$$
Loss spiral $1/\{1 - [\frac{\chi_t \psi_t}{\eta_t} - 1] \frac{q'(\eta_t)}{q(\eta_t)/\eta_t}\}$ (infinite sum)

- Technological illiquidity $(\kappa, \delta) \Rightarrow$ market illiquidity $q'(\eta)$
 - (dis)investment adjustment cost

■ 5. Solving system of ODE numerically

Matlab ODE solver, ode45

- Boundary conditions
 - $\theta(0) = M$ for large constant M
 - $\theta'(\eta)$
 - q(0) =(closed form for log utility and log Φ)

Monetary Models

- "Money models" without intermediaries
 - Store of value: Money pays no dividend and is a bubble

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson		
With capital	Diamond		

Monetary Models

- "Money models" without intermediaries
 - Store of value: Money pays no dividend and is a bubble

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari, Krusell-Smith	Basic "I Theory"

Monetary Models

- "Money models" without intermediaries
 - Store of value: Money pays no dividend and is a bubble

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari, Krusell-Smith	Basic "I Theory"

- With intermediaries/inside money
 - "Money view" (Friedman & Schwartz) vs. "Credit view" (Tobin)

Monetary Models – The I Theory of Money

- Step 1: Postulate process for value of money $p_t K_t$
 - $\frac{dp_t}{p_t} = \mu_t^p dt + \sigma_t^p dZ_t^{\text{vectors}}$ (money + bond) $dB_t/B_t = \mu_t^B dt + \sigma_t^B dZ_t$ (part due to consul bond)

Outside Money

Conclusion

- Manual for continuous time macro-finance models
 - 4 step approach
- More tractable: explicit amplification terms
- Volatility dynamics characterization
 - Precautionary motive
 - Endogenous fat tails, crisis probability
- Undercapitalized sectors, liquidity mismatch, fire-sales, equity issuance cycles, fat tails,
- Revival of "Money and Banking"
 - The I Theory of Money with short-term money and long-term bond