Macro, Money and Finance: A Continuous Time Approach

Markus K. Brunnermeier & Yuliy Sannikov
Princeton University

Trinity of Stability Conference
Princeton, Nov. 6th, 2015
- Price stability
 Monetary policy

- Financial stability
 Macroprudential policy

- Fiscal debt sustainability
 Fiscal policy

- Short-term interest
- Policy rule (terms structure)

- Reserve requirements
- Capital/liquidity requirements
- Collateral policy
 Margins/haircuts
- Capital controls
Macro, Money and Finance

- **Endogenous level**
 - Persistence & amplification
 - “Net worth trap”

- **Endogenous risk dynamics**
 - Tail risk
 - Crisis probability
 - “Volatility Paradox”

- **Illiquidity and liquidity mismatch**
 - Undercapitalized sectors
 - Time varying risk premia (dynamics)
 - External funding premium

- **Value of money**

- **Welfare**
 - Interaction: regulatory, monetary and other policies
History: Macro & Finance

- **Verbal Reasoning** *(qualitative)*
 - Fisher, Keynes, ...

- **Timeline**
 - **Macro**
 - Growth theory
 - *Dynamic (cts. time)*
 - *Deterministic*
 - Introduce stochastic
 - *Discrete time*
 - Brock-Mirman
 - Kydland-Prescott
 - DSGE models
 - **Finance**
 - Portfolio theory
 - *Static*
 - *Stochastic*
 - Introduce dynamics
 - *Continuous time*
 - Options
 - Term structure
 - Agency theory

- **Cts. time macro with financial frictions**
Amplification & Persistence

 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
Amplification & Persistence

 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

 - Technological/market illiquidity
 - KM: Leverage bounded by margins; BGG: Verification cost (CSV)
 - Stronger amplification effects through prices (low net worth reduces leveraged institutions’ demand for assets, lowering prices and further depressing net worth)
Amplification & Persistence

 - Perfect (technological) liquidity, but **persistence**
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

 - Technological/market illiquidity
 - KM: Leverage bounded by margins; BGG: Verification cost (CSV)
 - Stronger **amplification** effects through **prices** (low net worth reduces leveraged institutions’ demand for assets, lowering prices and further depressing net worth)

- “once and for all shock”
 - no volatility dynamics
Impulse response vs. Volatility dynamics

- “once and for all shock”
 = no uncertainty about length of slump
- Sequence of adverse shock
Why continuous time modeling?

- Characterization for volatility and amplification
 - Discrete: only impulse response functions
 - Only for shocks starting at the steady state
 - Only expected path – fan charts help somewhat
 - More analytical steps
 - Return equations
 - Next instant returns are essentially log normal
 (easy to take expectations)
 - Explicit net worth and state variable dynamics
 - Continuous: only slope of price function determines amplification
 - Discrete: need whole price function (as jump size can vary)
- Numerically simple – solve differential equations
- Discrete: IES/RA within period = ∞, across periods $1/\gamma$
Cts. time: special features of diffusions

- Continuous path – fast enough deleveraging
 - Never jumps over a specific point, e.g. insolvency point

- Implicit assumption: can react to small price changes
 - Can continuously delever as wealth goes down
 - Makes them more bold ex-ante
Recent macro literature (in cts time)

- **Core**

- **Intermediation/shadow banking**

- **Quantification**
 - He & Krishnamurthy (2014), Mittnik & Semmler (2013)

- **International**
 - BruSan (2015), Maggiori (2013)

- **Monetary**
 - “The I Theory of Money” (2012), Drechsler et al. (2014)

-
Financial frictions

- Costly state verification (BGG)

- Leverage constraints
 - Exogenous limit (Bewley/Ayagari)

 - Collateral constraints
 - Next period’s price (KM)
 \[Rb_t \leq q_{t+1} k_t \]
 - Next periods volatility (VaR)
 - Current price

- Incomplete markets
 - Endogenous leverage

\[\text{Debt limit can depend on prices/volatility} \]
Roadmap

- Why continuous time?
- Literature

Simple model
- With undesirable features
- Add portfolio choice with general utility function

Full model
- With all desired features
- Add equity issuance
A simple model

Basak & Cuoco (1998)

Experts
- Output: $y_t = ak_t$
- Consumption rate: c_t
- Investment rate: λ_t

\[
\frac{dk_t}{k_t} = (\Phi(\lambda_t) - \delta) dt + \sigma dZ_t
\]

\[E_0\left[\int_0^\infty e^{-\rho t} \log(c_t) \, dt \right]\]

- Can only issue risk-free debt

Households
- No output: $a = 0$
- Consumption rate: c_t

\[E_0[\int_0^\infty e^{-\rho t} \log(c_t) \, dt]\]
Equilibrium

- An equilibrium consists of functions that for each history of macro shocks \(\{Z_s, s \in [0, t]\} \) specify
 - \(q_t \) the price of capital
 - \(k_t, k_t = 0 \) capital holdings
 - \(c_t \geq 0, c_t = 0 \) consumption of representative expert and households
 - \(\iota_t, \iota_t = 0 \) rate of internal investment, per unit of capital
 - \(r \) the risk-free rate

- such that
 - intermediaries and households maximize their utility, taking prices \(q_t \) as given and
 - markets for capital and consumption goods clear
Equilibrium

- Equilibrium is a **map**

 Histories of shocks \(\{Z_s, s \leq t\} \)

 \[
 \eta_t = \frac{N_t}{q_t K_t} \in (0,1)
 \]

 wealth distribution

 Experts’ wealth share

- Experts, HH solve optimal investment, portfolio, consumption

- Markets clear
Solution steps

1. Postulate endogenous processes
 • \[\frac{dq_t}{q_t} = \mu_t^q dt + \sigma_t^q dZ_t \]
 - Returns from holding capital

2. Equilibrium conditions
 • Agents’ optimization
 - Internal investment (new capital formation)
 - Optimal portfolio choice
 - Optimal consumption
 • Market clearing conditions

3. Law of motion of state variable
 • wealth (share) distribution \(\eta_t \)

4. Express in ODEs of state variable
1. Postulate endogenous process

Postulate

\[dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t \]

Return on capital

\[dr_t^k = \frac{a - \iota_t}{q_t} dt + \frac{d(k_tq_t)}{k_tq_t} \]

\[\text{dividend yield} \]
\[\text{capital gains} \]

\[d(k_tq_t) = (\Phi(\iota_t) - \delta + \mu_t^q + \sigma_t^q) dt + (\sigma + \sigma_t^q) dZ_t \]

by Ito’s product rule

Recall

\[dk_t/k_t = (\Phi(\iota_t) - \delta) + \sigma dZ_t \]

In this simple model it will turn out that \(q \) is constant, i.e. \(\mu_t^q = \sigma_t^q = 0 \).
2. Equilibrium optimality conditions

a. Investment rate (capital formation)
 - Static problem
 \[\max_t \Phi(\lambda_t) - \lambda_t/q_t \]
 - FOC: \(\Phi'(\lambda_t) = \frac{1}{q_t} \) (marginal Tobin’s q)

b. Consumption choice
 - \(c_t = \rho N_t \) due to log utility

c. Portfolio choice
 - Volatility of wealth = Sharpe ratio of risky investment
2. Equilibrium market clearing conditions

- **Goods market price of capital**

\[\rho q_t K_t = (a - \iota_t(q_t))K_t \]

- \(q_t = q = \ldots \)
- Special case: \(\Phi(t) = \frac{\log(\kappa \iota + 1)}{\kappa} \) \[\iota = \frac{(q-1)}{\kappa} \]

\[q = \frac{a+1/\kappa}{r+1/\kappa} \]

- **Risk free rate**

\[dr_t^k = \frac{a-\iota_t}{q_t} + \left(\Phi(\iota_t) - \delta \right)dt + \sigma dZ_t \]

- Sharpe ratio:
- Volatility of net worth:
- Sharpe ratio = volatility of \(N_t \)

\[r_t = \rho + \Phi(\iota) - \delta - \frac{\sigma^2}{\eta_t} \]
3. Law of motion of η_t

- \[\frac{dN_t}{N_t} = r_t \, dt + \frac{\sigma}{\eta_t} \, dt + \frac{\sigma}{\eta_t} \, dZ_t - \rho \, dt \]

- \[d\left(\frac{q_tK_t}{q_tK_t}\right) = . . \]

- Use Ito ratio rule for $\eta_t = N_t/(q_tK_t)$

\[\frac{d\eta_t}{\eta_t} = \frac{(1-\eta_t)^2}{\eta_t^2} \sigma^2 \, dt + (1-\eta_t) \sigma \, dZ_t \]
Observations

\[\frac{d\eta_t}{\eta_t} = \frac{(1-\eta_t)^2}{\eta_t^2}\sigma^2 dt + (1-\eta_t)\sigma dZ_t \]

- Wealth share \(\eta \) moves with macro shock \(dZ_t \)
- In the long run experts “save their way out”, \(\eta \rightarrow 1 \)

- Sharpe ratio \(\frac{\rho + \Phi(\nu) - \delta - r_t}{\sigma} \)
 - Increases as \(\eta \) goes down, (to \(\infty \) as \(\eta \rightarrow 0 \))
 - Achieved through a lower risk free rate

- \(q \) is constant
 - No endogenous risk
 - No amplification
 - No volatility effects
Generalizing preference: portfolio choice

1. Also postulate process for marginal utility
 \[d\theta_t / \theta_t = \mu_t^\theta dt + \sigma_t^\theta dZ_t \]
 SDF: \(e^{\rho_s \theta_{t+s} / \theta_t} \)

2. Portfolio choice: Optimality condition
 - For asset \(A \) with payoff process \(dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t \)
 \[0 = \mu_t^\theta - \rho + \mu_t^A + \sigma_t^A \sigma_t^\theta \]
 - Intuition:
 i. Discrete time analog: Take log of \(1 = E_t [SDF_{t,t+s}(R_{t,t+s})] \)
 ii. Consider wealth \(n_t \) invested in \(A \), so that \(dn_t / n_t = dr_t^A \)
 \(n_{t+s} e^{-\rho_s \theta_{t+s} / \theta_t} \) is a martingale
Generalizing preference: portfolio choice

1. Also postulate process for marginal utility
\[d\theta_t/\theta_t = \mu^\theta_t dt + \sigma^\theta_t dZ_t \]
SDF: \[e^{\rho s \theta_{t+s}/\theta_t} \]

2. Portfolio choice: Optimality condition
 • For asset \(A \) with payoff process
 \[dr^A_t = \mu^A_t dt + \sigma^A_t dZ_t \]
 \[0 = \mu^\theta_t - \rho + \mu^A_t + \sigma^A_t \sigma^\theta_t \]
 • Intuition:
 i. Discrete time analog: Take log of \(1 = E_t[SDF_{t,t+s}(R_{t,t+s})] \)
 ii. Consider wealth \(n_t \) invested in \(A \), so that
 \[dn_t/n_t = dr^A_t \]
 \[n_{t+s}e^{-\rho_s \theta_{t+s}/\theta_t} \] is a martingale

 • For risk free asset
 \[0 = \mu^\theta_t - \rho + r \]
 • Sharpe ratio
 \[\frac{\mu^A_t - r_t}{\sigma^A_t} = -\sigma^\theta_t \]
1. Also postulate process for marginal utility
 \[d\theta_t/\theta_t = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t \]
 SDF: \(e^{\rho s \theta_{t+s}/\theta_t} \)

2. Portfolio choice: Optimality condition
 - For asset \(A \) with payoff process
 \[dr_t^A = \mu_t^A dt + \sigma_t^A dZ_t \]
 \[
 0 = \mu_t^\theta - \rho + \mu_t^A + \sigma_t^A \sigma_t^{\theta}
 \]
 - Intuition:
 i. Discrete time analog: Take log of \(1 = E_t[SDF_{t,t+s}(R_{t,t+s})] \)
 ii. Consider wealth \(n_t \) invested in \(A \), so that
 \[dn_t/n_t = dr_t^A \]
 \[n_{t+s} e^{-\rho s \theta_{t+s}/\theta_t} \] is a martingale

 - For risk free asset
 \[
 0 = \mu_t^\theta - \rho + r
 \]
 - Sharpe ratio
 \[
 \frac{\mu_t^A - r_t}{\sigma_t^A} = -\sigma_t^{\theta}
 \]

Example 1: \(u(c) = \log(c) \)
\[
\theta_t = \frac{1}{c_t} = \frac{1}{\rho n_t} \quad \Rightarrow \quad \sigma_t^{\theta} = -\sigma_t^n
\]
Generalizing preference: portfolio choice

1. Also postulate process for marginal utility
 \[d\theta_t / \theta_t = \mu^\theta_t \, dt + \sigma^\theta_t \, dZ_t \]
 SDF: \(e^{\rho_s \theta_{t+s} / \theta_t} \)

2. Portfolio choice: Optimality condition
 - For asset \(A \) with payoff process \(dr_t^A = \mu^A_t \, dt + \sigma^A_t \, dZ_t \)
 \[0 = \mu^\theta_t - \rho + \mu^A_t + \sigma^A_t \sigma^\theta_t \]
 - Intuition:
 i. Discrete time analog: Take log of \(1 = E_t[SDF_{t,t+s}(R_{t,t+s})] \)
 ii. Consider wealth \(n_t \) invested in \(A \), so that \(dn_t/n_t = dr_t^A \)
 \(n_{t+s} e^{-\rho_s \theta_{t+s} / \theta_t} \) is a martingale

 - For risk free asset
 \[0 = \mu^\theta_t - \rho + r \]
 - Sharpe ratio
 \[\frac{\mu^A_t - r_t}{\sigma^A_t} = -\sigma^\theta_t \]

Example 1: \(u(c) = \log(c) \)
\[\theta_t = \frac{1}{c_t} = \frac{1}{\rho n_t} \Rightarrow \sigma^\theta_t = -\sigma^n_t \]

Example 2: \(u(c) = \frac{c^{1-\gamma}}{1-\gamma} \)
\[\Rightarrow \sigma^\theta_t = -\gamma \sigma^c_t \]
Desired model properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Net worth trap look at stationary distribution
- Endogenous risk
 - Fat tails
 - Assets are more correlated
 - SDF vs. cash-flow news
- Volatility paradox
- Financial innovation less stable economy
Full model

Experts

- Output: \(y_t = ak_t \)
- Consumption rate: \(c_t \)
- Investment rate: \(l_t \)
 \[
 \frac{dk_t}{k_t} = (\Phi(l_t) - \delta)dt + \sigma dZ_t
 \]

- \(E_0[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt] \)

- Can issue
 - Risk-free debt
 - Equity, but most hold \(\chi_t \geq \chi \)

Households

- Output: \(y_t = ak_t \)
- Consumption rate: \(c_t \)
- Investment rate: \(l_t \)
 \[
 \frac{dk_t}{k_t} = (\Phi(l_t) - \delta)dt + \sigma dZ_t
 \]

- \(E_0[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt] \)

- \(a \geq a \)
- \(\delta \leq \delta \)
Experts

- Experts must hold fraction $\chi_t \geq \chi$
Solution steps

1. Postulate endogenous processes
 • \(\frac{dq_t}{q_t} =, \frac{d\theta_t}{\theta_t} =.., \frac{d\theta_t}{\theta_t} = \mu_t \, dt + \sigma_t \, dZ_t \)

2. Equilibrium conditions
 • Agents’ optimization
 ▪ Internal investment (new capital formation)
 ▪ Optimal portfolio choice with equity issuance
 ▪ Optimal consumption
 • Market clearing conditions

3. Law of motion of state variable
 • wealth (share) distribution \(\eta_t \)

4. Express in ODEs of state variable
2. Optimal portfolio condition

- Without equity issuance

\[
\frac{a-l_t + \Phi(l_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} = -\sigma_t \theta
\]

\[
\frac{a-l_t + \Phi(l_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} \leq -\sigma_t \theta \quad \text{with equality if } \psi_t < 1
\]
2. Optimal portfolio condition

Without equity issuance

\[
\frac{a - \ell_t + \Phi(\ell_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} = -\sigma_t^\theta \chi_t (-\sigma_t^\theta) + (1 - \chi_t)(-\sigma_t^\theta)
\]

\[
\frac{a - \ell_t + \Phi(\ell_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t}{\sigma + \sigma^q} \leq -\sigma_t^\theta \quad \text{with equality if } \psi_t < 1
\]

If experts require higher returns than HH

- if \(-\sigma^\theta > -\sigma_t^\theta \Rightarrow \chi_t = \chi\)
- Otherwise \(-\sigma^\theta = -\sigma_t^\theta\)

\[
\frac{(a-a)/q_t}{\sigma + \sigma_t^q} \geq \chi \quad \text{with equality if } \psi_t < 1
\]
3. Law of motion of η_t

\[
\frac{dN_t}{N_t} = r_t dt + \frac{\chi_t \psi_t (\sigma + \sigma_t^q)}{\eta_t} \left(-\sigma_t^\theta \right) dt \\
+ \frac{\chi_t \psi_t (\sigma + \sigma_t^q)}{\eta_t^2} dZ_t - \frac{C_t}{N_t} dt
\]

- Use Ito ratio rule for $\eta_t = N_t / (q_t K_t)$

\[
\frac{d\eta_t}{\eta_t} = ..
\]
4. Express in functions $q(\eta), \theta(\eta), \psi(\eta), \chi(\eta)$

- Convert equilibrium conditions and law of motion
- Replace terms $\mu^q_t, \mu^\theta_t, \sigma^q_t, \sigma^\theta_t, \ldots$ with expressions containing derivatives of q and θ – using Ito’s lemma
4. Express in functions $q(\eta), \theta(\eta), \psi(\eta), \chi(\eta)$

- Convert equilibrium conditions and law of motion
- Replace terms $\mu_t^q, \mu_t^\theta, \sigma_t^q, \sigma_t^\theta, \ldots$ with expressions containing derivatives of q and θ – using Ito’s lemma

- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
4. Express in functions \(q(\eta), \theta(\eta), \psi(\eta), \chi(\eta) \)

- Convert equilibrium conditions and law of motion
- Replace terms \(\mu_t^q, \mu_t^\theta, \sigma_t^q, \sigma_t^\theta, \ldots \) with expressions containing derivatives of \(q \) and \(\theta \) – using Ito’s lemma

A simple example: Leland (1994)

- \(dV_t = rV_t \, dt + \sigma V_t \, dZ_t \) (under Q) default at \(V_t = V_B \) to \(\alpha V_B \)
 1. Postulate \(dE_t = \mu_t^E E_t \, dt + \sigma_t^E E_t \, dZ_t \)
 2. Equilibrium condition: \(r = \mu_t^E - \frac{c}{E_t} \)
4. Express in functions $q(\eta), \theta(\eta), \psi(\eta), \chi(\eta)$

- Convert equilibrium conditions and law of motion
- Replace terms $\mu^q_t, \mu^\theta_t, \sigma^q_t, \sigma^\theta_t, \ldots$ with expressions containing derivatives of q and θ – using Ito’s lemma

A simple example: Leland (1994)

1. Postulate $dE_t = \mu^E_t E_t dt + \sigma^E_t E_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
2. Equilibrium condition: $r = \mu^E_t - \frac{c}{E_t}$
3. Ito lemma on $E(V)$: $\mu^E_t E_t = E'(V_t) rV_t + \frac{1}{2} \sigma^2 V_t^2 E''(V_t)$
4. Express in functions $q(\eta), \theta(\eta), \psi(\eta), \chi(\eta)$

- Convert equilibrium conditions and law of motion
- Replace terms $\mu_t^q, \mu_t^\theta, \sigma_t^q, \sigma_t^\theta, \ldots$ with expressions containing derivatives of q and θ – using Ito’s lemma

- A simple example: Leland (1994)
 - $dV_t = rV_t dt + \sigma V_t dZ_t$ (under Q) default at $V_t = V_B$ to αV_B
 1. Postulate $dE_t = \mu_t^E E_t dt + \sigma_t^E E_t dZ_t$
 2. Equilibrium condition: $r = \mu_t^E - \frac{c}{E_t}$
 - Ito lemma on $E(V)$: $\mu_t^E E_t = E'(V_t) rV_t + \frac{1}{2} \sigma^2 V_t^2 E''(V_t)$

- New equilibrium condition: $r = \frac{E'(V_t) rV + \frac{1}{2} \sigma^2 V_t^2 E''(V_t)}{E(V)} - \frac{c}{E(V)}$
 - Two boundary conditions
 1. $E(V_B) = 0$
 2. $V - E(V) \to \frac{c}{r}$ as $V \to \infty$
Amplification – closed form

\[\sigma_t^n = \frac{\frac{\chi_t \psi_t}{\eta_t} - 1}{1 - \left[\frac{\chi_t \psi_t}{\eta_t} - 1 \right] \frac{q'(\eta_t)}{q(\eta_t)/\eta_t}} \]

- Leverage effect \(\frac{\chi_t \psi_t}{\eta_t} - 1 \)
- Loss spiral \(1/\left\{ 1 - \left[\frac{\chi_t \psi_t}{\eta_t} - 1 \right] \frac{q'(\eta_t)}{q(\eta_t)/\eta_t} \right\} \) (infinite sum)

- Technological illiquidity \((\kappa, \delta)\) ⇒ market illiquidity \(q'(\eta)\)
 - (dis)investment adjustment cost
5. Solving system of ODE numerically

- Matlab ODE solver, ode45

- Boundary conditions
 - \(\theta(0) = M \) for large constant \(M \)
 - \(\theta'(\eta) \)
 - \(q(0) = \) (closed form for log utility and log \(\Phi \))
Monetary Models

- “Money models” **without intermediaries**
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Aiyagari, Krusell-Smith</td>
</tr>
<tr>
<td></td>
<td>Basic “I Theory”</td>
<td></td>
</tr>
</tbody>
</table>
Monetary Models

- **“Money models” without intermediaries**
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

- Only money
 - Samuelson
 - Bewley

- With capital
 - Diamond
 - Aiyagari, Krusell-Smith
 - Basic “I Theory”
Monetary Models

- **“Money models” without intermediaries**
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

- **Only money**
 - Samuelson
 - Bewley

- **With capital**
 - Diamond
 - Aiyagari, Krusell-Smith
 - Basic “I Theory”

- **With intermediaries/inside money**
 - “Money view” (Friedman & Schwartz) vs. “Credit view” (Tobin)
Monetary Models – The I Theory of Money

- **Step 1:** Postulate process for value of money $p_t K_t$
 - \[
 \frac{dp_t}{p_t} = \mu^p_t \, dt + \sigma^p_t \, dZ_t \quad \text{(money + bond)}
 \]
 - \[
 dB_t / B_t = \mu^B_t \, dt + \sigma^B_t \, dZ_t \quad \text{(part due to consul bond)}
 \]
Conclusion

- Manual for continuous time macro-finance models
 - 4 step approach
- More tractable: explicit amplification terms
- Volatility dynamics characterization
 - Precautionary motive
 - Endogenous fat tails, crisis probability
- Undercapitalized sectors, liquidity mismatch, fire-sales, equity issuance cycles, fat tails,
- Revival of “Money and Banking”
 - The I Theory of Money with short-term money and long-term bond